Some Viruses Use an Alternative Genetic Alphabet

In a trio of studies, researchers follow up on a 40-year-old finding that certain bacteriophages replace adenine with so-called diaminopurine, perhaps to avoid host degradation.

abby olena
| 4 min read
An illustration of an orange bacteriophage virus sitting on top of a green bacterium

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, ILEXX

In 1977, scientists showed that a virus called S-2L that infects cyanobacteria has no adenine in its genome. Instead, S-2L uses a nucleotide known as diaminopurine or 2-aminoadenine, shortened to Z, that makes three hydrogen bonds—rather than the two that adenine (A) makes—when paired with thymine (T). In three papers published today (April 29) in Science, researchers show that the use of Z by phages, those viruses that infect bacteria, is more widespread than previously believed, and they describe the pathways by which the alternative nucleotide is made and incorporated into phage genomes.

“It’s been known that there’s this phage that doesn’t have adenine in its genome . . . and it’s been an unsolved mystery about how it does that,” says Jef Boeke, a molecular biologist at New York University Grossman School of Medicine who was not involved in the work. These papers “spell that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio