Stem Cell Vaccine Protects Mice From Cancer

Stem cells and cancer cells have enough molecular similarities that the former can be used to trigger immunity against the latter.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ISTOCK, NOPPARITWith their pluripotency and ability to self-renew, some cancer cells have been likened to stem cells. Now, researchers show that the similarities between the cells are in fact sufficient for induced pluripotent stem cells (iPSCs) to serve as anti-cancer vaccines in mice. A paper in Cell Stem Cell today (February 15) reports that injections of irradiated iPSCs protect mice from developing breast, lung, and skin cancers, and prevent surgically removed cancers from regrowing.

“The approach, at first glance, seems simplistic and naive,” cancer researcher Robert Weinberg of MIT’s Whitehead Institute for Biomedical Research writes in an email to The Scientist. “Why should an early embryonic cell or a cell closely related to such an embryonic cell display markers that would provoke the immune system to attack certain types of cancer cells?”

But while it may not be intuitive to use an unrelated cell type to trigger immunity against cancer, hints that the scheme might work were dotted here and there throughout the literature. For example, cancer cells and embryonic cells have similar gene-expression and antigen profiles, and studies from almost a century ago showed that injecting embryonic material into animals protected them from transplanted tumors. More recently, embryonic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH