Stem Cell Vaccine Protects Mice From Cancer

Stem cells and cancer cells have enough molecular similarities that the former can be used to trigger immunity against the latter.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ISTOCK, NOPPARITWith their pluripotency and ability to self-renew, some cancer cells have been likened to stem cells. Now, researchers show that the similarities between the cells are in fact sufficient for induced pluripotent stem cells (iPSCs) to serve as anti-cancer vaccines in mice. A paper in Cell Stem Cell today (February 15) reports that injections of irradiated iPSCs protect mice from developing breast, lung, and skin cancers, and prevent surgically removed cancers from regrowing.

“The approach, at first glance, seems simplistic and naive,” cancer researcher Robert Weinberg of MIT’s Whitehead Institute for Biomedical Research writes in an email to The Scientist. “Why should an early embryonic cell or a cell closely related to such an embryonic cell display markers that would provoke the immune system to attack certain types of cancer cells?”

But while it may not be intuitive to use an unrelated cell type to trigger immunity against cancer, hints that the scheme might work were dotted here and there throughout the literature. For example, cancer cells and embryonic cells have similar gene-expression and antigen profiles, and studies from almost a century ago showed that injecting embryonic material into animals protected them from transplanted tumors. More recently, embryonic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel