Stem Cells Made by Modifying the Epigenome with CRISPR

Researchers use the technique to turn on Oct4 or Sox2 in mouse embryonic fibroblasts and convert them into pluripotent cells.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mouse embryonic fibroblastsWIKIMEDIA, BOZONHIGGSAA form of CRISPR that activates rather than cuts DNA can convert embryonic mouse cells to induced pluripotent stem cells (IPSCs), researchers reported last week (January 18) in Cell Stem Cell.

“This paper demonstrates the ability of CRISPR effectors to go beyond turning on a single gene and completely rewire the transcriptional state of the cell,” Neville Sanjana, a bioengineer at the New York Genome Institute who did not participate in the study, writes in an email to The Scientist.

To generate induced pluripotent stem cells (IPSCs), researchers have traditionally overexpressed the genes for four transcription factors: Oct4, Sox2, Klf4, and c-Myc. But in the new study, researchers made iPSCs from mouse embryonic fibroblasts by using an epigenetic CRISPR technique to switch on an endogenous copy of just one transcription factor—either Sox2 or Oct4.

Sheng Ding, a stem cell biologist at the Gladstone Institute of Cardiovascular Disease and the University of California, San Francisco, and colleagues ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH