Stem Cells Made by Modifying the Epigenome with CRISPR

Researchers use the technique to turn on Oct4 or Sox2 in mouse embryonic fibroblasts and convert them into pluripotent cells.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mouse embryonic fibroblastsWIKIMEDIA, BOZONHIGGSAA form of CRISPR that activates rather than cuts DNA can convert embryonic mouse cells to induced pluripotent stem cells (IPSCs), researchers reported last week (January 18) in Cell Stem Cell.

“This paper demonstrates the ability of CRISPR effectors to go beyond turning on a single gene and completely rewire the transcriptional state of the cell,” Neville Sanjana, a bioengineer at the New York Genome Institute who did not participate in the study, writes in an email to The Scientist.

To generate induced pluripotent stem cells (IPSCs), researchers have traditionally overexpressed the genes for four transcription factors: Oct4, Sox2, Klf4, and c-Myc. But in the new study, researchers made iPSCs from mouse embryonic fibroblasts by using an epigenetic CRISPR technique to switch on an endogenous copy of just one transcription factor—either Sox2 or Oct4.

Sheng Ding, a stem cell biologist at the Gladstone Institute of Cardiovascular Disease and the University of California, San Francisco, and colleagues ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo