Study Finds Epigenetic Differences Between Hatchery-Raised and Wild-Born Salmon

The variation may help explain why stocked salmon don’t fare as well in the ocean.

Written byShawna Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

HELD BACK: Pacific salmon raised in hatcheries, such as the Big Qualicum Hatchery in British Columbia, are less likely than wild-born fish to survive ocean life.DAVID WILLIS, SALMON ENHANCEMENT PROGRAM

When captive-bred Pacific salmon leave their hatcheries to swim free in the ocean, they soon take on the look of their wild counterparts, with the color of their sides changing from red to silver, the better to mesh with their new saltwater digs. But in important, less visible ways, the fish never shake the legacy of their domestic upbringing: They are less likely than wild-born salmon to survive in rivers and the ocean, and if they live long enough to reproduce, they produce fewer offspring.

Just what’s wrong with these hatchery-reared fish? With wild stocks on the decline and aquaculturists stepping in to try and bolster Pacific salmon populations, answering this question—and, if possible, increasing the fitness of hatchery-raised fish—has gained importance.

Some researchers suggest ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile

Published In

March 2018

The Transgender Brain

Researchers seek clues to the origins of gender dysphoria

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies