Study Finds Epigenetic Differences Between Hatchery-Raised and Wild-Born Salmon

The variation may help explain why stocked salmon don’t fare as well in the ocean.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

HELD BACK: Pacific salmon raised in hatcheries, such as the Big Qualicum Hatchery in British Columbia, are less likely than wild-born fish to survive ocean life.DAVID WILLIS, SALMON ENHANCEMENT PROGRAM

When captive-bred Pacific salmon leave their hatcheries to swim free in the ocean, they soon take on the look of their wild counterparts, with the color of their sides changing from red to silver, the better to mesh with their new saltwater digs. But in important, less visible ways, the fish never shake the legacy of their domestic upbringing: They are less likely than wild-born salmon to survive in rivers and the ocean, and if they live long enough to reproduce, they produce fewer offspring.

Just what’s wrong with these hatchery-reared fish? With wild stocks on the decline and aquaculturists stepping in to try and bolster Pacific salmon populations, answering this question—and, if possible, increasing the fitness of hatchery-raised fish—has gained importance.

Some researchers suggest ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.

Published In

March 2018

The Transgender Brain

Researchers seek clues to the origins of gender dysphoria

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio