Synthetic Stem Cells Regenerate Heart Tissue in Mice

These engineered “cells” were made from the secretions and membranes of human mesenchymal stem cells.

Written byDiana Kwon
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

STEM “CELL” SYNTHESIS: To create synthetic mesenchymal stem cells (synMSCs), the researchers start with human bone marrow-derived MSCs (1). They combine secretions from these cells with a biodegradable polymer, poly(lactic-co-glycolic acid) or PLGA, creating microparticles (2). The microparticles are then encased in cell membranes derived from human MSCs (3) to allow the synMSCs to anchor to tissues and gradually release secreted factors, mimicking real MSCs (4).© GEORGE RETSECK. REDRAWN FROM CIRC RES, doi:10.1161/CIRCRESAHA.116.310374, 2017, WITH PERMISSION

Mesenchymal stem cells (MSCs) are typically derived from adult bone marrow and fat tissue and are currently being tested in hundreds of clinical trials. They secrete proteins and other molecules that, when released to tissues, can promote regeneration, acting “like a pharmacy that provides drugs for tissues to heal,” says Ke Cheng, a biomedical engineer at North Carolina State University and the University of North Carolina at Chapel Hill.

One limitation is that these cells need to be carefully frozen to keep them alive in storage, then defrosted, expanded, and gently maintained until used. “This process is tedious and sometimes can affect the potency of the cell,” Cheng says. He also points out that some cells will inevitably die during handling, and injecting dying or ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

June 2017

Foregoing Food

The physiological effects of fasting

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA