Toward Making Sperm in the Lab

Researchers devise a technique for creating gametes from murine embryonic stem cells.

Written byRina Shaikh-Lesko
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, L.A. DAWSONScientists in China have moved one step closer to stem cell–based treatments for infertility, reporting their creation of sperm-like cells from mouse embryonic stem cells. Stem cell researchers have for years worked to create sex cells from stem cells, but coaxing stem cells to undergo meiosis in vitro was a major stumbling block in efforts to create sperm or ova from progenitors. The team, led by Jiahao Sha of Nanjing University, is the first to produce sperm-cell precursors called round spermatids entirely in vitro. The group’s results appeared in Cell Stem Cell today (February 25).

“It’s a good piece of work that really sets the stage for so many different fields by putting together pieces necessary to de novo derive germ cells and use them for reproductive purposes,” said Brian Hermann, a reproductive biologist and stem cell researcher at the University of Texas, San Antonio, who was not involved in the work. “The fact they were able to complete meiosis in vitro from germ cells derived from pluripotent stem cells is really a major advance,” he added.

Sha and colleagues first induced murine embryonic stem cells to differentiate into cells that resembled primordial germ cells—precursors to haploid gametes. They then placed these cells in culture containing hormones like testosterone. This culture imitated the environment that primordial germ cells are exposed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH