Traitorous Tumor Cells Kill Their Own Kind

Researchers plan to turn cancer cells into defectors, engineering them to kill the tumors from whence they came, and have tested the approach in mice.

Written byRuth Williams
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Using cancer to fight cancer might seem counterintuitive, but there’s method to the apparent madness and, according to proof-of-principle animal experiments reported in Science Translational Medicine today (July 11), it works. Tumor cells engineered to secrete anticancer agents yet resist self-destruction can be used to kill tumors in mice and then, in a fate befitting this act of betrayal, off themselves.

“This is an interesting study showing that genetically-engineered autologous cancer cells can be exploited as a sort of Trojan horse for delivering TRAIL, a pro-apoptotic agent, to tumors,” oncologist Angelo Corti of the Vita-Salute San Raffaele University in Milan, Italy, who was not involved in the study, writes in an email to The Scientist. “This novel approach undoubtedly represents an important step ahead in translational cancer research.”

TRAIL—or, tumor necrosis factor-related apoptosis-inducing ligand—is an antitumor agent identified in mammals that can induce cell death in a variety of cancer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH