Tumor-Shrinking Triple-Helices

A braided structure and some adhesive hydrogel make therapeutic microRNAs both stable and sticky.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

MicroRNAs (miRs) are small, noncoding ribonucleic acids that control the translation of target messenger RNAs (mRNAs). Given their roles in development, differentiation, and other cellular processes, misregulation of miRs can contribute to diseases such as cancer. Indeed, “they are recognized as important modulators of cancer progression,” says Natalie Artzi of Harvard Medical School.

In addition to occasionally promoting cancer pathology, miRs also hold the potential to treat it—either by restoring levels of suppressed miRs, or by repressing overactive ones using antisense miRs (antagomiRs). While miRs are promising therapeutic molecules, says Daniel Siegwart of the University of Texas Southwestern Medical Center in Dallas, their use “is currently hindered by at least two issues: nucleic acid instability in vivo, and the development of effective delivery systems to transport miRs into tumor cells.”

Artzi and her team have now addressed both of these issues in one fell swoop. They first assembled two therapeutic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies