Tuning the Brain

Deep-brain stimulation is allowing neurosurgeons to adjust the neural activity in specific brain regions to treat thousands of patients with myriad neurological disorders.

Written byAndres Lozano
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

DEEP-BRAIN STIMULATION (DBS): Electrodes implanted into targeted brain regions deliver electrical stimulation to either excite or inhibit activity in a neural circuit of interest. DBS patients are also fitted with battery-powered implanted pulse generators, typically placed subcutaneously below the clavicle and connected to the electrodes via insulated wires. These pulse generators can deliver electrical stimulation from 20 to 200 times per second. © THOM GRAVESThe world’s first neurosurgeries took place about 7,000 years ago in South America with the boring of holes into hapless patients’ skulls, a process known as trephination. Practitioners of the day believed the source of neurologic and psychiatric disease to be evil spirits inhabiting the brain, and the way to treat such disorders, they reasoned, was to make holes in the skull and let the evil spirits escape. The procedure was surprisingly common, with as many as 1 percent of skulls at some archaeological sites having these holes.

Today, neurosurgeons are still drilling into the brains of patients suffering from neurologic and psychiatric disorders, but rather than letting evil spirits escape, doctors are putting things in—inserting electrical probes to tame rogue neurons or to stimulate brain regions that are underperforming. This procedure, known as deep-brain stimulation (DBS), was first tried for the treatment of pain in the 1960s, and has since been attempted in patients with numerous other neurologic disorders. DBS is currently approved in the U.S. or Europe for the treatment of essential tremor, Parkinson’s disease, dystonia (a motor disorder that causes extreme twisting and repetitive motions), epilepsy, and obsessive-compulsive disorder (OCD). The therapy is currently in clinical trials for depression, Alzheimer’s disease, addiction, and more.

Each of these disorders is a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH