Valerie Arboleda Uses Big Data to Unravel the Biology of a Rare Disease

The UCLA geneticist examines how defects in a histone protein lead to symptoms throughout the body.

Written byShawna Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© JOHN DAVIS PHOTOGRAPHYValerie Arboleda traces her love of research back to time spent in a lab as an undergraduate at Columbia University. “I think I was a little bit lucky, in that early on there were a couple of fun experiments that just worked,” she says. While working on a project examining cerebral ischemia, she was able to use qPCR to confirm that microRNAs had been transfected into cultured mouse neuronal cells and successfully knocked down a targeted gene. This motivated her to further investigate the biology behind this experiment, Arboleda recalls. “I kind of got hooked after that.”

At the time, however, Arboleda wasn’t convinced a career in research was practical, and after graduation, she opted to study medicine at the University of California, Los Angeles (UCLA). But her love of the lab lingered, and between her second and third years of med school, she did a full-time research training fellowship in the lab of geneticist Eric Vilain, where she ended up staying on after her year was up, eventually earning an MD/PhD. Vilain had been instrumental in describing a rare genetic disorder called IMAGe (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies) syndrome in the late 1990s, when he was a resident. For more than a decade, “there had been numerous attempts by other groups [to identify the gene responsible] . . . and no one ever found it,” Vilain says. But Arboleda was able to track it down: using next-generation sequencing to compare the genomes of IMAGe patients with each other and with unaffected family members, she pinpointed variations in a specific stretch of a gene called CDKN1C.1

After earning her degrees, Arboleda started a UCLA residency in pathology that included a substantial research component. “She really was very engaged in her rotations, both intellectually and from the scientific curiosity perspective,” recalls Omai Garner, a pathologist with whom Arboleda worked regularly during her residency. Together with Garner, Arboleda spearheaded a study examining the types and quality of test results in the UCLA system that ended up in patients’ electronic medical records, drawing on statistical tools she’d used in earlier genomics work to crunch the numbers.2 “For somebody to take the initiative and to move [this kind of project] forward all the way through publication during their residency is very impressive,” Garner says.

During her transition from medical school to residency, Arboleda also worked ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile

Published In

May 2018

Rare Diseases

The realities of studying uncommon conditions

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH