Vision Restored: The Latest Technologies to Improve Sight

Cell implants, gene therapy, even optogenetics are making headway in clinical trials to treat various forms of blindness.

Written byAnna Azvolinsky
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ISTOCK, BATKEIn recent years, scientists have accomplished what previously was saved for miracle workers: they have given blind patients the ability to see better. In 2017, the vision field saw an enormous advance with the approval Luxturna, the first gene therapy to correct vision loss in certain patients with childhood onset blindness.

And just last week, researchers reported that a retinal implant allowed a 69-year-old woman with macular degeneration to more than double the number of letters she could identify on a vision chart.

“It’s early data but very promising, including one patient with impressive vision gains, for a disease where we don’t have any treatment options,” says Thomas Albini of the University of Miami’s Bascom Palmer Eye Institute who was not involved in the study.

What we have is a replica of the cells that are missing, due to degeneration.—Amir Kashani,
University of Southern California

The implant, given to five patients with dry age-related macular degeneration (AMD), is a single sheet of retinal pigment epithelial (RPE) cells derived from human embryonic stem cells. Other teams across ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH