Brush Up: What Is Bisulfite Sequencing and How Do Researchers Use It to Study DNA Methylation?

Prior to DNA methylation sequencing, researchers treat their samples with sodium bisulfite to distinguish methylated cytosine from unmethylated cytosine.

Written byDeanna MacNeil, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

DNA methylation is a fundamental epigenetic mechanism in which a methyl group is added onto a nucleotide, commonly cytosine. DNA methylation affects many biological processes, including gene expression, embryonic development, inflammation, and cellular proliferation and differentiation. Several complex diseases have aberrant DNA methylation patterns, such as different types of cancer and neurodegenerative disorders, which are often associated with genomic instability and loss of DNA homeostasis.1–3

Researchers need effective methods with high sensitivity and reliability to explore the importance of DNA methylation. The gold standard technology that scientists use to detect DNA methylation is bisulfite genomic sequencing. It is a qualitative, quantitative, and efficient approach to identify methylated cytosine at single base-pair resolution.3

Cytosine methylation occurs when a methyl group binds to the fifth carbon of a cytosine to form 5-methylcytosine (5mC). Researchers cannot detect 5mC with traditional molecular techniques such as PCR or cloning methods because methyl groups are not ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Deanna MacNeil, PhD headshot

    Deanna earned their PhD from McGill University in 2020, studying the cellular biology of aging and cancer. In addition to a passion for telomere research, Deanna has a multidisciplinary academic background in biochemistry and a professional background in medical writing, specializing in instructional design and gamification for scientific knowledge translation. They first joined The Scientist's Creative Services team part time as an intern and then full time as an assistant science editor. Deanna is currently an associate science editor, applying their science communication enthusiasm and SEO skillset across a range of written and multimedia pieces, including supervising content creation and editing of The Scientist's Brush Up Summaries.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo