DNA methylation is a fundamental epigenetic mechanism in which a methyl group is added onto a nucleotide, commonly cytosine. DNA methylation affects many biological processes, including gene expression, embryonic development, inflammation, and cellular proliferation and differentiation. Several complex diseases have aberrant DNA methylation patterns, such as different types of cancer and neurodegenerative disorders, which are often associated with genomic instability and loss of DNA homeostasis.1–3
Researchers need effective methods with high sensitivity and reliability to explore the importance of DNA methylation. The gold standard technology that scientists use to detect DNA methylation is bisulfite genomic sequencing. It is a qualitative, quantitative, and efficient approach to identify methylated cytosine at single base-pair resolution.3
Cytosine methylation occurs when a methyl group binds to the fifth carbon of a cytosine to form 5-methylcytosine (5mC). Researchers cannot detect 5mC with traditional molecular techniques such as PCR or cloning methods because methyl groups are not ...





















