A New Culprit in Air Pollution: Reactions Triggered by Human Skin

Oil on human skin reacts with ozone to produce highly reactive radicals that can generate toxic airborne chemicals in indoor spaces.

Written byShafaq Zia
| 4 min read
Four study participants in t shirts and shorts sit around a table in a stainless steel chamber. All four are looking at personal electronics and wearing a breathing mask connected to a nearby machine via blue tubing.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

The COVID-19 pandemic has sparked newfound interest in indoor air quality. People are now thinking about how virus particles can spread indoors, but the hazards of indoor environments go beyond pandemic-causing pathogens. Air pollution is the world’s largest environmental health threat, according to the World Health Organization (WHO), but a majority of people likely don’t think of their own bodies as part of the problem, especially within their own homes.

Now, an interdisciplinary collaboration between atmospheric chemists and engineers in Germany, Denmark, France, and the US has shown that oil from human skin reacts with ozone to generate potent, free radicals that can further react with most organic compounds present in the indoor environment to in turn produce dangerous pollutants.

This reactive pathway, detailed in a study published yesterday (September 1) in Science, helps explain how the human body directly influences the chemistry of indoor environments. It may also aid ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shafaq Zia

    Shafaq Zia is a freelance science journalist and a graduate student in the Science Writing Program at the Massachusetts Institute of Technology. Previously, she was a reporting intern at STAT, where she covered the COVID-19 pandemic and the latest research in health technology. Read more of her work here.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo