Age-Old Questions

How do we age, and can we slow it down?

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZETo die of old age is a death rare, extraordinary, and singular, and therefore so much less natural than the others. ’Tis the last and extremest sort of dying, and the more remote the less to be hoped for. It is indeed the boundary of life, beyond which we are not to pass: which the law of nature has pitched for a limit not to be exceeded.
—Michel de Montaigne, Essays, Book I, Chapter 57

This centuries-old description by the French essayist perfectly captures just how peculiar it is to arrive at the end of one’s life having escaped death by infection or diseases such as cancer, heart disease, and dementia, for which age is the biggest risk factor. Although Montaigne himself reached what was at the time considered old age, succumbing to a bacterial infection in 1592, when he was 59 years old, he certainly did achieve literary immortality.

This issue of The Scientist is about aging, and the focus is not on the diseases that are hallmarks of time’s passage, but on why cells have a limited life span and what fails on the cellular and molecular level as the years go by. It’s a complicated picture, with lots of missing pieces. The field of cellular biogerontology was kick-started by the observation, published in 1961, that normal cells in culture stopped dividing after 50 or so doublings—the well-known Hayflick limit. In “Of Cells and Limits,” you can meet Leonard Hayflick and learn of his dogma-defying discovery in a profile of the unretired (and unretiring) octogenarian’s contributions to the understanding of cellular aging.

A staff-written feature describes some of the knowns and unknowns of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Mary Beth Aberlin

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours