Aging Shrinks Chromosomes

A study on human cells reveals how cellular aging affects the 3-D architecture of chromosomes.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Still from video showing model of chromosome compaction (right) in aging cellsCRISCIONE ET AL, SCI. ADV. 2016; 2 : e1500882In cells undergoing senescence, chromosomes tend to become more compact, according to a report published today (February 5) in Science Advances. This and other chromatin rearrangements noted in the report add to a growing understanding of how the physical structure of chromosomes might contribute to altered gene expression in aging cells.

“This is the first study using this model of replicative senescence to define those higher-order three-dimensional chromatin changes,” said epigeneticist Peter Adams of the Cancer Research UK Beatson Institute in Glasgow who was not involved in the work. “It’s something that people have waited for quite a long time to see.”

Although getting older causes our tissues to deteriorate and eventually fail, at a cellular level senescence is an important process for health. Cellular senescence marks the permanent, stable end to a cell’s replicating ability. “It basically puts an upper limit on the number of times that any one cell can divide,” explained Adams and, therefore, “it inherently tends to prevent cancer”—which occurs when cells proliferate uncontrollably. On the other hand, this lack of cell ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research