Aging Shrinks Chromosomes

A study on human cells reveals how cellular aging affects the 3-D architecture of chromosomes.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Still from video showing model of chromosome compaction (right) in aging cellsCRISCIONE ET AL, SCI. ADV. 2016; 2 : e1500882In cells undergoing senescence, chromosomes tend to become more compact, according to a report published today (February 5) in Science Advances. This and other chromatin rearrangements noted in the report add to a growing understanding of how the physical structure of chromosomes might contribute to altered gene expression in aging cells.

“This is the first study using this model of replicative senescence to define those higher-order three-dimensional chromatin changes,” said epigeneticist Peter Adams of the Cancer Research UK Beatson Institute in Glasgow who was not involved in the work. “It’s something that people have waited for quite a long time to see.”

Although getting older causes our tissues to deteriorate and eventually fail, at a cellular level senescence is an important process for health. Cellular senescence marks the permanent, stable end to a cell’s replicating ability. “It basically puts an upper limit on the number of times that any one cell can divide,” explained Adams and, therefore, “it inherently tends to prevent cancer”—which occurs when cells proliferate uncontrollably. On the other hand, this lack of cell ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH