All Together Now

Understanding the biological roots of cooperation might help resolve some of the biggest scientific challenges we face.

Written byMary Beth Aberlin
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZEWhat a coincidence it is that The Scientist inaugurates 2016 with a feature entitled “The Evolution of Cooperation.” I am writing this editorial at the end of an extraordinary week during which two topics of prime interest to scientists have been the subject of international gatherings: the use of gene editing to manipulate human genomes and the adoption of measures to slow global warming. Cooperation among scientists, regulators, and governments is the only path to the resolution of these two complex issues.

The International Summit on Human Gene Editing met in Washington, DC, from December 1–3 to consider the scientific, medical, and ethical considerations surrounding the study and use of newly developed methods for altering human DNA. Much of the conversation involved the CRISPR/Cas method, a technique that has exploded over the last few years due to its relative simplicity and precision. Researchers are now using CRISPR-based protocols to manipulate human cells in the lab, and a growing number of biotech companies are champing at the bit to make CRISPR the next big thing in gene therapy. At the end of the conference, the organizing committee of 12 biologists, clinicians, and bioethicists issued a statement that endorses the use of the technique to repair somatic-cell mutations for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies