Astrocytes, Not Just Neurons, Play a Role in Sleep

In mice, the brain’s main glial cell type exhibits distinctive patterns of activity across the sleep-wake cycle and influences the response to sleep deprivation.

Written byAbby Olena, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Astrocytes in the mouse brain generate a fluorescent calcium indicator (gold) captured with a two-photon microscope.
ASHLEY INGIOSI, COURTESY OF CURRENT BIOLOGY

For years, researchers have assumed that the signals in the brain that make mammals sleep come from neurons and that astrocytes, glial cells that outnumber neurons five to one in the brain, were following neuronal cues. In a study published today (September 24) in Current Biology, researchers show that calcium levels—a marker of signaling activity between cells—change in astrocytes as mice sleep and wake. Without this cross-talk between astrocytes, mice don’t make up for lost sleep like they normally do, indicating that these cells in the brain have much more influence on sleep than previously thought.

“There was this idea for a long time . . . that astrocytes were just glue, pulling the brain together and are more like passive cells, but it’s not true,” says Sejal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies