Astrocytes, Not Just Neurons, Play a Role in Sleep

In mice, the brain’s main glial cell type exhibits distinctive patterns of activity across the sleep-wake cycle and influences the response to sleep deprivation.

Written byAbby Olena, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Astrocytes in the mouse brain generate a fluorescent calcium indicator (gold) captured with a two-photon microscope.
ASHLEY INGIOSI, COURTESY OF CURRENT BIOLOGY

For years, researchers have assumed that the signals in the brain that make mammals sleep come from neurons and that astrocytes, glial cells that outnumber neurons five to one in the brain, were following neuronal cues. In a study published today (September 24) in Current Biology, researchers show that calcium levels—a marker of signaling activity between cells—change in astrocytes as mice sleep and wake. Without this cross-talk between astrocytes, mice don’t make up for lost sleep like they normally do, indicating that these cells in the brain have much more influence on sleep than previously thought.

“There was this idea for a long time . . . that astrocytes were just glue, pulling the brain together and are more like passive cells, but it’s not true,” says Sejal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH