Book Excerpt from p53

In Chapter 12, "Of Mice and Men," author Sue Armstrong recounts the point at which researchers moved from working with p53 in tissue culture to studying the gene in animal models.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

BLOOMSBURY SIGMA, FEBRUARY 2015In the long history of p53, huge amounts of data have been generated by scientists poring over little scraps of tissue and clusters of cells in test tubes and Petri dishes—specimens that have been coaxed and manipulated in super-controlled environments. “These [systems] are easy and convenient, but they’re not the real world,” says David Lane, co-discoverer of the gene in 1979, sounding a note of caution. “The more I look at p53, the more I realise that in the real world it’s operating at a very different level and in a different sort of way.” Tissue culture itself puts cells under stress and p53 into a state of alert, he says, and rather than studying the difference between active and inactive protein, what most researchers are in fact studying is the difference between very active and moderately active protein. Experiments using animal models tell a story that’s different and a lot more subtle.

Recognition of this fact lies behind one of the legendary stories of p53 research, and it involves David Lane and his friend and colleague, Peter Hall, both working at Dundee University at the time. The Year was 1992. The two scientists had been sharing a pint in a local Pub at the end of a busy day, and mulling over the crucial question of whether p53 responds to cellular stress in real life, as it does in tissue culture in the lab. They knew others were asking the same question and that competition to find answers was hot. They knew too that they faced a forest of paperwork to obtain Home Office permission for animal experiments, and their frustration at the prospect of inevitable delay ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo