Can Single Cells Learn?

A controversial idea from the mid-20th century is attracting renewed attention from researchers developing theories for how cognition arises with or without a brain.

Written byCatherine Offord
| 13 min read

Register for free to listen to this article
Listen with Speechify
0:00
13:00
Share

ABOVE: An illustration of Paramecium, a genus of microscopic, single-celled, and free-living protozoans
© ISTOCK.COM, WIR0MAN

Even by her own telling, Beatrice Gelber’s work was offbeat. It was October 1960, and Gelber had recently opened a facility called the Basic Health Research Institute in Tucson, Arizona. Described as an “enthusiastic psychologist” by the newspaper interviewing her about her work, Gelber explained how, several years earlier, she’d discovered an unexpected behavior in a protozoan called Paramecium aurelia. This unicellular organism, she claimed, had shown it was capable of learning, a feat generally assumed to be restricted to what were considered higher organisms such as mammals and birds. Fellow scientists “all thought I was plain crazy when I started,” she told the Tucson Daily Citizen. “But now they think I may have something.”

Gelber had gotten into science relatively late in life, after the youngest of her three children had flown the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

May 2021

Animal Hybrids

Mating between different species may drive evolution

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research