Cancer's Vanguard

Exosomes are emerging as key players in metastasis.

Written byCatherine Offord
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

PREPARING THE TURF: Before tumor cells arrive at their metastatic destination, part of the site is readied for them. One recent study of liver metastasis in mice found that resident macrophages called Kupffer cells take up exosomes from the original tumor (1). Additionally, macrophages from the bone marrow show up upon the release of fibronectin by other liver cells called stellate cells (2). A current proposal for additional steps in metastatic niche development includes the recruitment of epithelial cells and fibroblasts, which contribute to angiogenesis, and, finally, the arrival of tumor cells themselves (3). © IKUMI KAYAMA/STUDIO KAYAMA

In 2005, David Lyden noticed something unexpected. He and his colleagues at Weill Cornell Medical College had been researching metastasis—the spread of cancer from one part of the body to another. The team had shown that bone marrow–derived cells (BMDCs) were recruited to future metastatic sites before the arrival of tumor cells, confirming that metastasis occurred after a habitable microenvironment, or “premetastatic niche,” had been prepared.1

But carefully studying images of this microenvironment in the lung tissue of mice, Lyden saw something else. Amongst the BMDCs, the micrographs showed tiny specks, far too small to be cells, gathering at the future site of metastasis. “I said, ‘What are these viruses doing here?’” recalls Lyden. “I had no idea about exosomes, microvesicles, and microparticles.”

It’s like ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH