Capturing Cancer Cells on the Move

Three approaches for isolating and characterizing rare tumor cells circulating in the bloodstream

Written byNicholette Zeliadt
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

© ABOMB INDUSTRIES DESIGN/ISTOCKPHOTO.COMIn 1869, pathologist Thomas Ashworth noticed some unusual cells in the blood of a patient who had died of cancer. The cells didn’t look like normal blood cells; instead, they were similar in appearance to those found in the numerous solid tumors present all over the patient’s body. Ashworth speculated that perhaps the cells were derived from the existing tumors, and could help explain the distribution of the patient’s multiple lesions (Australian Med J, 14:146-49, 1869).

Scientists now believe that these so-called circulating tumor cells (CTCs) play a key role in metastasis. Because CTCs can be obtained through routine blood draws—a procedure that is much easier and less invasive than a tumor biopsy, making it amenable to repetition—many scientists are hopeful that the cells could be used to detect cancer and metastases at an early stage. CTCs could also help doctors plot the molecular signature of an individual’s tumor over time, monitor a tumor’s responsiveness to therapy, and identify targets for the development of personalized therapies.

However, CTCs are extremely rare and challenging to isolate. Most current estimates suggest that a patient with metastatic cancer has only about one CTC for every billion or so normal blood cells. “It’s kind of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery