Capturing Cancer Cells on the Move

Three approaches for isolating and characterizing rare tumor cells circulating in the bloodstream

Written byNicholette Zeliadt
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

© ABOMB INDUSTRIES DESIGN/ISTOCKPHOTO.COMIn 1869, pathologist Thomas Ashworth noticed some unusual cells in the blood of a patient who had died of cancer. The cells didn’t look like normal blood cells; instead, they were similar in appearance to those found in the numerous solid tumors present all over the patient’s body. Ashworth speculated that perhaps the cells were derived from the existing tumors, and could help explain the distribution of the patient’s multiple lesions (Australian Med J, 14:146-49, 1869).

Scientists now believe that these so-called circulating tumor cells (CTCs) play a key role in metastasis. Because CTCs can be obtained through routine blood draws—a procedure that is much easier and less invasive than a tumor biopsy, making it amenable to repetition—many scientists are hopeful that the cells could be used to detect cancer and metastases at an early stage. CTCs could also help doctors plot the molecular signature of an individual’s tumor over time, monitor a tumor’s responsiveness to therapy, and identify targets for the development of personalized therapies.

However, CTCs are extremely rare and challenging to isolate. Most current estimates suggest that a patient with metastatic cancer has only about one CTC for every billion or so normal blood cells. “It’s kind of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research