Compatible Company

A guide to culturing cells with viruses in mind

Written byAmber Dance
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

MERS-CoV particles on camel epithelial cells.NIAID IN COLLABORATION WITH COLORADO STATE UNIVERSITYViruses infect just about every living organism, be it man, mouse, flea, or bacterium. These parasites cannot reproduce in isolation: they need to get inside the hosts’ cells. That’s why virologists need cell cultures, but to wield those cultures well they must understand both viruses and host cells.

It’s not as simple as tossing the two together in a flask or petri dish, notes Charu Kaushic, a professor at McMaster University in Hamilton, Ontario. As a postdoc, she studied the innate immune system using epithelial cells from the human female reproductive tract. When she started her own lab, Kaushic decided to investigate how the sexually transmitted viruses HIV and herpes simplex 2 interact with those same cell types. Establishing the cell culture system—completely characterizing the cells, working out viral dosing and readouts, and achieving reproducible, publishable results—took thee years (reviewed in Methods, 55:114-21, 2011).

There are several reasons virologists culture cells, says Marshall Bloom, associate director for science management at Rocky Mountain Laboratories, a division of NIH’s National Institute of Allergy and Infectious ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH