Compatible Company

A guide to culturing cells with viruses in mind

Written byAmber Dance
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

MERS-CoV particles on camel epithelial cells.NIAID IN COLLABORATION WITH COLORADO STATE UNIVERSITYViruses infect just about every living organism, be it man, mouse, flea, or bacterium. These parasites cannot reproduce in isolation: they need to get inside the hosts’ cells. That’s why virologists need cell cultures, but to wield those cultures well they must understand both viruses and host cells.

It’s not as simple as tossing the two together in a flask or petri dish, notes Charu Kaushic, a professor at McMaster University in Hamilton, Ontario. As a postdoc, she studied the innate immune system using epithelial cells from the human female reproductive tract. When she started her own lab, Kaushic decided to investigate how the sexually transmitted viruses HIV and herpes simplex 2 interact with those same cell types. Establishing the cell culture system—completely characterizing the cells, working out viral dosing and readouts, and achieving reproducible, publishable results—took thee years (reviewed in Methods, 55:114-21, 2011).

There are several reasons virologists culture cells, says Marshall Bloom, associate director for science management at Rocky Mountain Laboratories, a division of NIH’s National Institute of Allergy and Infectious ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies