CRISPR Editing Heads Off Disease in Mouse Livers

Separate proof-of-concept studies report success against two inherited diseases.

| 2 min read
a white mouse on a black background

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK, SIDSNAPPER

Two studies published yesterday (October 9) in Nature Medicine report success using modified CRISPR-Cas9 gene editing to prevent or cure two inherited diseases in mice. In one study, researchers corrected the gene mutation that causes phenylketonuria (PKU) in the livers of adult mice; in the other, editing short-circuited a condition similar to the human disease HT1 in the livers of fetal mice.

In the PKU study, carried out at ETH Zurich in Switzerland, researchers bundled a CRISPR-Cas9 system plus the enzyme cytidine deaminase into an adeno-associated viral vector and injected it into the livers of mice with defective genes for phenylalanine hydroxylase. (A lack of functional phenylalanine hydroxylase causes a toxic buildup of phenylalanine in patients with PKU unless they’re diagnosed soon after birth and put on a special diet.) The gene-editing homed in on and changed a single base pair in the genomes of the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio