Cross-Resistance: One Cancer Therapy Can Undermine the Next

Targeted cancer therapy may jeopardize the effectiveness of subsequent immunotherapy by reducing dendritic cell numbers and activation, according to study of mice and patient samples.

Written bySophie Fessl, PhD
| 6 min read
A false-colored micrograph showing swirls of yellow, red, and magenta cells

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: Immune cells (red and magenta) infiltrate a skin tumor (yellow) in this biopsy from a patient with melanoma.
TRANSLATIONAL RESEARCH LABORATORY, MELANOMA INSTITUTE AUSTRALIA

Targeted therapy and immunotherapy are often employed as a one-two punch to treat certain cancers, but sometimes this approach falls short. In a study published on July 15 in Nature Cancer, researchers found that dendritic cells, cells crucial for activating the immune system during immunotherapy, were less active and less numerous in mouse models of melanoma that had become resistant to targeted therapy, explaining why these tumors were less sensitive to immunotherapy. Stimulating dendritic cells restored the tumors’ response to immunotherapy.

“This study provides mechanistic insight into a phenomenon that many melanoma experts have observed firsthand in the clinic and that has recently been described in retrospective studies: poor response to immunotherapy following the development of resistance to [targeted] therapy,” Brent Hanks, a medical oncologist ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems