Electric Shock Allows for CRISPR Gene Editing Without a Viral Vector

Brief electroporation appears to make T cells more receptive to new genetic material, which could speed the development of immunotherapies.

Written byAshley Yeager
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

A quick zap of electricity makes T cells more receptive to taking in new genetic material and gene-editing reagents, researchers report July 11 in Nature. The discovery could expedite protocols for creating immunotherapies to treat a range of cancers.

“What takes months or even a year may now take a couple weeks using this new technology,” Fred Ramsdell, vice president of research at the Parker Institute for Cancer Immunotherapy in San Francisco, where one of the authors of the study is a member, tells The New York Times. “If you are a cancer patient, weeks versus months could make a huge difference.”

Traditionally, researchers genetically alter immune cells for immunotherapy treatments using disabled viruses. The viruses inject new genes into T cells, which, when infused into cancer patients, target tumors for destruction. But developing new viruses to edit the genetic material of T cells can take several years, and the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies