Electric Shock Allows for CRISPR Gene Editing Without a Viral Vector

Brief electroporation appears to make T cells more receptive to new genetic material, which could speed the development of immunotherapies.

| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

A quick zap of electricity makes T cells more receptive to taking in new genetic material and gene-editing reagents, researchers report July 11 in Nature. The discovery could expedite protocols for creating immunotherapies to treat a range of cancers.

“What takes months or even a year may now take a couple weeks using this new technology,” Fred Ramsdell, vice president of research at the Parker Institute for Cancer Immunotherapy in San Francisco, where one of the authors of the study is a member, tells The New York Times. “If you are a cancer patient, weeks versus months could make a huge difference.”

Traditionally, researchers genetically alter immune cells for immunotherapy treatments using disabled viruses. The viruses inject new genes into T cells, which, when infused into cancer patients, target tumors for destruction. But developing new viruses to edit the genetic material of T cells can take several years, and the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer