Engineered Stem Cells Grant Geckos “Perfectly” Regenerated Tails

Geckos injected with neural stem cells modified to block cartilage growth developed the skeletal and nervous components normally lacking from regrown tails.

young woman smiling
| 4 min read
Lizard on glass tank
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Many species of lizards can drop their tails to distract a predator while they make their getaway, an ability known as tail autotomy. The animals then regrow their tails, but a regrown appendage is simply a cartilaginous tube; it lacks all the skeletal and neural structures of the original tail.

Now, researchers from the University of Southern California have discovered a way to allow mourning geckos (Lepidodactylus lugubris) to successfully regrow “perfect” tails, says lead study author Thomas Lozito, a regenerative biologist at the institution’s Keck School of Medicine. He and his colleagues engineered neural stem cells to be unresponsive to the signaling molecule that encourages cartilage production, then injected the cells into lizards whose tails had been amputated. In every case, the animals regrew tails that exhibit normal anatomical patterning, the team reports October 14 in Nature Communications—a first for lizards, they claim.

Lozito tells The Scientist that the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • young woman smiling

    Chloe Tenn

    Chloe Tenn is a graduate of North Carolina State University, where she studied neurobiology, English, and forensic science. Fascinated by the intersection of science and society, she has written for organizations such as NC Sea Grant and the Smithsonian. Chloe also works as a freelancer with AZoNetwork, where she ghostwrites content for biotechnology, pharmaceutical, food, energy, and environmental companies. She recently completed her MSc Science Communication from the University of Manchester, where she researched how online communication impacts disease stigma. You can check out more of her work here.

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome