Exercise Alters Epigenetics

Exercise causes short-term changes in DNA methylation and gene expression in muscle tissue that may have implications for type 2 diabetes.

Written byHannah Waters
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, JOINT BASE LEWIS MCCHORD

Exercise can delay the onset of diabetes by boosting the expression of genes involved in muscle oxidation and glucose regulation. A new study, published today (March 6) in Cell Metabolism, suggests that DNA methylation drives some of these changes, and that they can occur within just a few hours of exercise, providing a potential mechanism for how exercise protects the body from metabolic disease.

“It’s one of the first studies that really proves that DNA methylation can affect things in a very short timeframe,” said Marloes Dekker Nitert, who studies diabetes epigenetics at Lund University in Sweden and was not involved in the research.

People with type 2 diabetes are less responsive to insulin than healthy individuals, and thus have difficulties maintaining normal blood sugar ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH