Exercise Alters Epigenetics

Exercise causes short-term changes in DNA methylation and gene expression in muscle tissue that may have implications for type 2 diabetes.

Written byHannah Waters
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, JOINT BASE LEWIS MCCHORD

Exercise can delay the onset of diabetes by boosting the expression of genes involved in muscle oxidation and glucose regulation. A new study, published today (March 6) in Cell Metabolism, suggests that DNA methylation drives some of these changes, and that they can occur within just a few hours of exercise, providing a potential mechanism for how exercise protects the body from metabolic disease.

“It’s one of the first studies that really proves that DNA methylation can affect things in a very short timeframe,” said Marloes Dekker Nitert, who studies diabetes epigenetics at Lund University in Sweden and was not involved in the research.

People with type 2 diabetes are less responsive to insulin than healthy individuals, and thus have difficulties maintaining normal blood sugar ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies