Exploring the Roles of Enhancer RNAs

Scientists have recently discovered that enhancers are often transcribed into RNAs. But they’re still not sure what, if anything, these eRNAs do.

Written byAshley P. Taylor
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Four mechanisms by which eRNAs can functionWIKIMEDIA, PCLERMONTThere’s a lot that scientists don’t yet know about enhancers, genetic elements first described almost 35 years ago that, unlike promoters, can upregulate genes from some distance. That distance, while generally under 100 kilobases, can vary greatly. Usually, enhancers regulate the genes closest to them, but not always; the enhancer for the developmental gene Sonic hedgehog is a megabase away from its promoter in the human genome. What scientists do know is that enhancers seem to play key roles in human biology. One recently published atlas of enhancer expression in the human genome suggested that enhancers, which are expressed differently across cell types, could help explain how one genome encodes so many different kinds of cells. The same paper reported that single-nucleotide changes associated with human diseases are over-represented in enhancers and promoters relative to exons.

In a 2010 Nature paper, researchers in the lab of neurobiologist Michael Greenberg at Harvard Medical School reported that enhancers can produce RNA. Working with cultured mouse neurons, the scientists found that enhancers activated by neuron depolarization were transcribed all over the genome and that levels of enhancer RNAs (eRNAs) correlated with the production of messenger RNA (mRNA) from genes near the enhancers. Researchers had observed enhancer RNAs before, but this was the first evidence of widespread enhancer transcription. In the years since, several other groups have reported finding eRNAs in various biological systems. While eRNAs promise to help researchers understand how enhancers work, they also raise many questions of their own.

ERNAs are fairly short, ranging in length from 500 basepairs to 5 kilobases. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo