For Frogs, Bigger Brains Mean Worse Camouflage

Frogs invest in cognitive capacity to avoid predators—up until there are too many hungry snakes around for the evolutionary strategy to pay off.

Written byNatalia Mesa, PhD
| 3 min read
Green frog in tree with green leaves
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Bigger brains can be an advantage for prey animals, as it can help them outsmart their predators. But big brains may be too costly to maintain when predation risk is high, forcing animals to use other strategies to survive, suggests a study on frog camouflage published Wednesday (August 17) in Science Advances.

Prior research on various species including guppies has shown that animals with larger brains can better avoid predators, and the researchers behind the new work had previously shown that large-brained frogs live longer. But they also knew frogs deploy another successful anti-predation strategy: camouflage. Frogs can vary widely in how they look, from stunningly vibrant to nearly indistinguishable from their surroundings. The study authors were curious about the relationship between brain size and camouflage, and how predation pressure influenced both.

To find out, they hiked into in the Hengduan Mountains, a biodiverse range located in Southwestern China. At ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo