Genetic Underpinnings of Brain Activity May Differ in Autism

A study finds that expression levels of certain genes that track with brain activity—particularly those involved in brain development—vary between people with autism and their non-autistic peers.

Written byEmily Harris and Spectrum
| 3 min read
illustration of brain with DNA strand coming out the top
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The expression levels of certain genes that track with brain activity vary between people with autism and their non-autistic peers, according to a new study. Many of the affected genes code for proteins important for brain development, particularly in neurons that dampen brain activity.

Studying differences in activity-linked gene expression in the brain could help illuminate the pathways that contribute most to autism, says co-lead investigator Genevieve Konopka, associate professor of neuroscience at the University of Texas Southwestern Medical Center in Dallas.

The results are the product of an approach that compares brain activity measurements from imaging studies with gene-expression data from postmortem brain samples. The study “is one of the first to use postmortem gene expression from individuals with autism and assess how those gene-expression patterns might inform autism-relevant phenotypes,” Konopka says. Previous research using this approach found 38 genes that are associated with brain activity, 9 of which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel