Herpes Viruses Implicated in Alzheimer’s Disease

A new study shows that the brains of Alzheimer’s disease patients have a greater viral load, while another study in mice shows infection leads to amyloid-β build up.

head shot of blond woman wearing glasses
| 5 min read
Amyloid plaques (stained for amyloid-? peptide) detected in a post-mortem brain sample of a patient with Alzheimer's disease. Purple purple dots in the background are the nuclei of neurons and glia.

Amyloid plaques (stained for amyloid-? peptide) detected in a post-mortem brain sample of a patient with Alzheimer's disease. Purple purple dots in the background are the nuclei of neurons and glia.

SAM GANDY, ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

The brains of Alzheimer’s disease patients have an abnormal build up of amyloid-β proteins and tau tangles, which, according to many researchers, drives the ultimately fatal cognitive disease. This theory is being challenged by a newer one, which posits that microbes may trigger Alzheimer’s pathology.

Two new studies, using different approaches, further bolster this pathogen theory. Analyzing the transcriptomes of post-mortem brain samples from patients with Alzheimer’s disease, one group of researchers finds that two strains of human herpesvirus are significantly more abundant than in the brains of people of the same age without Alzheimer’s disease. Gene networks in the brains of Alzheimer’s patients with these strains are also rewired such that disease-related genes are differentially expressed compared to controls.

In the other study, another team of investigators observed in mouse models and in a three-dimensional human neuronal cell culture that a Herpseviridae infection could seed amyloid-β plaques.

“These two ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb