How RNAs Called SINEUPs Upregulate Translation

The recently discovered long noncoding RNAs seem to boost the production of specific proteins in the cell by interacting with RNA-binding proteins, researchers find.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: A synthetic SINEUP (blue) and its target mRNA (red) colocalize in the cytoplasm as part of a process that appears to help upregulate that mRNA's translation.
NAOKO TOKI

The paper
N. Toki et al., “SINEUP long non-coding RNA acts via PTBP1 and HNRNPK to promote translational initiation assemblies,” Nucleic Acids Res, 48:11626–44, 2020.

A few years ago, Piero Carninci of the RIKEN Center for Integrative Medical Sciences in Japan and colleagues discovered a novel type of RNA. These long, noncoding RNAs contain repetitive sequences called short interspersed nuclear elements (SINEs), and they upregulate the translation of specific mRNAs with complementary base sequences. Carninci and colleagues called the RNAs SINEUPs.

Curious about how the upregulation works, the team recently delved into the process using a synthetic SINEUP that targets mRNA coding for green fluorescent protein (GFP). The researchers used plasmids to transfect genes for the synthetic SINEUP and for GFP mRNA into ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.

Published In

January 2021

Expecting and Infected

What science is revealing about COVID-19 in mothers to be

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

The Scientist Placeholder Image

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies