ABOVE: 10-month-old human cortical organoids
MUOTRI LAB, UCSD
Cortical organoids—three-dimensional bundles of neurons and glia grown in a dish from induced pluripotent stem cells—look a lot like tiny brains. And while the gene expression, cell types, and organization found in these spherical structures have similarities to the developing cortex, it’s not clear whether they’re also an appropriate model in which to explore how neural networks form.
In a study published today (August 29) in Cell Stem Cell, researchers have shown that organoids derived from human stem cells produce brain waves that become more complex as development progresses. The synchronized neural activity can be blocked by drugs, a sign that cells were communicating with each other and forming functional neural circuits within the miniature brains.
The authors draw parallels between organoids’ neural patterns and those of the brains of preterm infants and point to them as evidence that cortical organoids could be ...