Human Cortical Organoids Model Neuronal Networks

After growing in culture for a few months, the mini-brains produced rhythmic neural activity that strengthened over time.

abby olena
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: 10-month-old human cortical organoids
MUOTRI LAB, UCSD

Cortical organoids—three-dimensional bundles of neurons and glia grown in a dish from induced pluripotent stem cells—look a lot like tiny brains. And while the gene expression, cell types, and organization found in these spherical structures have similarities to the developing cortex, it’s not clear whether they’re also an appropriate model in which to explore how neural networks form.

In a study published today (August 29) in Cell Stem Cell, researchers have shown that organoids derived from human stem cells produce brain waves that become more complex as development progresses. The synchronized neural activity can be blocked by drugs, a sign that cells were communicating with each other and forming functional neural circuits within the miniature brains.

The authors draw parallels between organoids’ neural patterns and those of the brains of preterm infants and point to them as evidence that cortical organoids could be ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis