Human Genetic Variation May Complicate CRISPR

Slight sequence differences confound target sites in precision genome-editing, a study shows.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ISTOCK, RATSANALNatural differences in our DNA may cut into CRISPR’s ability to precision-edit the human genome, by thwarting Cas9’s ability to hit the right genetic target—or any target at all. An analysis of the extent of this problem, described today (July 31) in Nature Medicine, could have implications for how genome-editing technologies are tested in clinical trials and whether they could become broadly available.

“Precision editing technologies like CRISPR/Cas9 are incredibly promising as therapies,” geneticist Daniel MacArthur of the Broad Institute of Harvard and MIT tells The Scientist in an email. “They’re also exquisitely sensitive to the precise genetic changes present in a patient's genome.”

In 2014, researchers first started to see how genetic variation could disrupt CRISPR-Cas9 from reaching its targets. But to what extent such variation could confound the ability of the Cas9 enzyme to recognize its intended editing site wasn’t well understood.

In the new study, David Scott and Feng Zhang, both of MIT and the Broad Institute, analyzed data from the Exome Aggregation Consortium and the 1,000 Genomes database, projects that catalogue human genetic variation, and found that differences in DNA substantially impact the efficacy ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Pairing Protein Engineering and Cellular Assays

Pairing Protein Engineering and Cellular Assays

Lonza
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo

Products

Metrion Biosciences Logo

Metrion Biosciences launches NaV1.9 high-throughput screening assay to strengthen screening portfolio and advance research on new medicines for pain

Biotium Logo

Biotium Unveils New Assay Kit with Exceptional RNase Detection Sensitivity

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo