Increasing Number of iPS Cell Therapies Tested in Clinical Trials

Since their discovery in 2006, induced pluripotent stem cells have been poised to reprogram regenerative medicine. Twelve years on, here’s how far they’ve come.

Written byKatarina Zimmer
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: © ISTOCK.COM, AVICONS

In a surgical procedure last month, neurosurgeons from Kyoto University implanted 2.4 million cells into the brain of a patient with Parkinson’s disease. The cells—derived from peripheral blood cells of an anonymous donor—had been reprogrammed into induced pluripotent stem cells (iPSCs) and then into dopaminergic precursor cells, which researchers hope will boost dopamine levels and ameliorate the patient’s symptoms.

The procedure is the most recent attempt by clinicians to test whether iPSCs can treat disease. In recent years, Japanese scientists have launched several clinical studies to examine their efficacy in heart disease and macular degeneration of the eye. And other researchers around the globe are exploring ways to turn the cells into treatments for everything from endometriosis to spinal cord injury. The initial foray into clinical trials raises hopes that the technology will bear fruit 12 years after its Nobel Prize–winning discovery.

“I’m excited that they’re ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies