Infographic: Treating Duchenne Muscular Dystrophy with CRISPR

The disease is caused by mutations in a single gene. Can gene editing fix the problem?

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Dystrophin is part of a protein complex linking the cytoskeleton of muscle fibers to the surrounding connective tissue (basal lamina). It’s a long protein with numerous redundant coils (purple balls), and acts like a shock absorber during contraction. Without functional dystrophin to support muscle strength and stability, muscle fibers are easily damaged.

Duchenne muscular dystrophy results from mutations in the DMD gene that encodes the dystrophin protein. There are many types of mutations that can cause the disease; each disrupts the reading frame such that translation terminates prematurely, producing no functional dystrophin protein. DMD mutations are particularly common in “hotspot” areas of the gene (exons 45–55 and 2–10).

Because the genetic underpinnings of Duchenne are known, researchers can devise gene-editing fixes to the problem. Several potential treatments are now being tested in preclinical and clinical studies. In some cases, they aim to correct the mutations in the DMD gene; other ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sandeep Ravindran

    This person does not yet have a bio.

Published In

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo