Infographic: Treating Duchenne Muscular Dystrophy with CRISPR

The disease is caused by mutations in a single gene. Can gene editing fix the problem?

Written bySandeep Ravindran
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Dystrophin is part of a protein complex linking the cytoskeleton of muscle fibers to the surrounding connective tissue (basal lamina). It’s a long protein with numerous redundant coils (purple balls), and acts like a shock absorber during contraction. Without functional dystrophin to support muscle strength and stability, muscle fibers are easily damaged.

Duchenne muscular dystrophy results from mutations in the DMD gene that encodes the dystrophin protein. There are many types of mutations that can cause the disease; each disrupts the reading frame such that translation terminates prematurely, producing no functional dystrophin protein. DMD mutations are particularly common in “hotspot” areas of the gene (exons 45–55 and 2–10).

Because the genetic underpinnings of Duchenne are known, researchers can devise gene-editing fixes to the problem. Several potential treatments are now being tested in preclinical and clinical studies. In some cases, they aim to correct the mutations in the DMD gene; other ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo