Infographic: A Yeast Model for Studying Histone Modifications

The methodology involves modifying histones and displaying them on the cell surface for analysis.

Written byAmanda Heidt
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

To develop a new platform for studying histone modifications, North Carolina State University synthetic biologist Alison Waldman and colleagues created a speedy and cost-effective platform using baker’s yeast (Saccharomyces cerevisiae). Waldman inserted a plasmid that encoded a histone and an enzyme suspected of modifying it into the nucleus of a yeast cell. The plasmid also contained a bidirectional promoter capable of synthesizing both the histone and the enzyme simultaneously (1). Thanks to genetic tags transcribed with the mRNAs, both proteins migrate to the cell’s endoplasmic reticulum (ER), where the enzyme modifies the histone at specific residues (2). Then, thanks to a unique quality of the yeast known as surface display, the modified histone is presented on the cell’s exterior (3), where researchers can apply antibodies that label acetylation at specific residues to reveal where the enzyme modified the histone (4).

Read the full story.

Correction (September 17): A former version ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • amanda heidt

    Amanda first began dabbling in scicom as a master’s student studying marine science at Moss Landing Marine Labs, where she edited the student blog and interned at a local NPR station. She enjoyed that process of demystifying science so much that after receiving her degree in 2019, she went straight into a second master’s program in science communication at the University of California, Santa Cruz. Formerly an intern at The Scientist, Amanda joined the team as a staff reporter and editor in 2021 and oversaw the publication’s internship program, assigned and edited the Foundations, Scientist to Watch, and Short Lit columns, and contributed original reporting across the publication. Amanda’s stories often focus on issues of equity and representation in academia, and she brings this same commitment to DEI to the Science Writers Association of the Rocky Mountains and to the board of the National Association of Science Writers, which she has served on since 2022. She is currently based in the outdoor playground that is Moab, Utah. Read more of her work at www.amandaheidt.com.

    View Full Profile

Published In

Online only cover of the The Scientist, September 2021 issue
September 2021

Mapping Covid

SARS-COV-2 wreaks havoc around the body

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH