It Takes Two

Two genes from the Y chromosome are sufficient to generate male mice capable of fathering healthy offspring via an assisted reproductive technique.

Written byJef Akst
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A healthy and fertile daughter of a Y-less male, shown with her own litter MONIKA WARDSry, long known to be critical for the development of testes, and Eif2s3y, more recently recognized as the kick-starter of spermatogenesis, are all the only genes from the Y chromosome required for male mice to generate early-stage sperm precursors capable of fertilizing eggs and yielding live offspring, according to new research published today (November 21) in Science.

“It’s quite an amazing technique to be able to get live, healthy offspring from round spermatids, which are way early in the final process of sperm maturation,” said Polly Campbell, an evolutionary biologist who studies the genetics of speciation at Oklahoma State University but was not involved in the research. Moreover, she added, the spermatids often showed abnormal morphology, yet were still able to yield offspring through an assisted reproductive technique. “That is probably the single most striking thing about this paper,” she said.

Reproductive biologist Monika Ward from the University of Hawaii in Honolulu has long been interested in the function of genes that exist on the male-only Y chromosome. Previously, Ward’s group had shown that it was possible to generate live offspring from ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research