The Challenge of Using CRISPR to Knock In Genes

Researchers are developing an array of techniques for accurately and efficiently inserting genes into DNA.

| 7 min read
labtools dna sequencing genome editing march 2019

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: modified from © ISTOCK.com, tera vector

Almost always, building something is harder than tearing it down. Similarly, knocking in genes poses a greater challenge than knocking them out. It’s a reality that researchers will have to overcome in order to get the most out of gene editing. Knocking in genes allows scientists to study the effects of specific gene variants, to use reporter genes like green fluorescent protein to track gene products in time and space, to probe genome regulation, and ultimately, to repair disease-causing genes. “It’s a really effective way to interrogate every base of a gene,” says Greg Findlay, an MD/PhD candidate at the University of Washington.

CRISPR-Cas9, a gene editing technology known for its user-friendliness, can knock genes in or out. Knocking out a gene involves inserting CRISPR-Cas9 into a cell using a guide RNA that targets the tool to the gene of interest. There, Cas9 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Anna Nowogrodzki

    This person does not yet have a bio.

Published In

March 2019

Going Under

Dissecting the effects of anesthetics

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide