Limited Meal Times Prevent Obesity in Mice Prone to Gaining Weight

Even in mice with a busted circadian clock and an unhealthy diet, carefully timed feeding overcomes the rodents’ predispositions for metabolic diseases.

Written byAbby Olena, PhD
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mice with faulty circadian clocks are prone to obesity and diabetes. So are mice fed a diet high in fat. Remarkably, animals that have both of these obesity-driving conditions can stay lean and metabolically healthy by simply limiting the time of day when they eat. In a study published today (August 30) in Cell Metabolism, researchers report that restricting feeding times to mice’s active hours can overcome both defective clock genes and an unhealthy diet, a finding that may have an impact in the clinic.

The work corroborates previous research showing how powerful restricted feeding can be to improve clock function, says Kristin Eckel-Mahan, a circadian biologist at the University of Texas Health Science Center at Houston who did not participate in the study. Over the last 20 years, biologists have found circadian clocks keeping physiologic time in almost every organ. They have also shown that mice with disrupted clocks ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA