Long-Lived Trees’ Epigenetic Mutations Serve as a Molecular Clock

Cells found in different branches of a tree have different patterns of DNA methylation, changes in which accumulate over time.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: David Braun from BraunArborCare climbs the tree in Hood River, Oregon, used in the study.
BOB SCHMITZ

The paper
B.T. Hofmeister et al., “A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa,” Genome Biol, 21:259, 2020.

Like animals, plants can accumulate alterations in their epigenomes—the pattern of epigenetic marks on their DNA. So far, researchers have only examined the epigenomes of short-lived annual plant species. As a result, it has been impossible to tell if those mutations arise throughout development or just during gamete production, as many in the field assumed, explain long-time collaborators Frank Johannes of the Technical University of Munich’s Institute for Advanced Study (TUM-IAS) and the University of Georgia’s Bob Schmitz, who has a fellowship at TUM-IAS.

To understand how DNA methylation changed over time in long-lived species, Johannes, Schmitz, and their colleagues decided to investigate the epigenome of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

March 2021

Viruses' Sex Bias

The immune systems of males and females respond differently to viral intruders

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits