Mammals Can Use Their Intestines to Breathe

Researchers show that both mice and pigs are capable of oxygenating their blood via the colon—a capacity that, if shared by humans, could be leveraged in the clinic to minimize the need for mechanical ventilation.

abby olena
| 4 min read
An illustrated schematic with a blue background describes how oxygenated perfluorocarbon can rescue respiratory failure in mammals.

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Ventilators—machines that force air into the lungs—can be lifesaving for patients who can’t breathe on their own due to injury or illness. But they can also cause lung damage because of the strong pressure they exert. Plus, ventilator numbers are limited, which has infamously created critical shortages during the COVID-19 pandemic.

In a study published today (May 14) in Med, researchers present an alternative oxygenation route: through the anus. They introduced oxygen in either gas or liquid form to the intestines of both mice and pigs that had experienced asphyxia or low-oxygen conditions and showed that the animals survived much longer than did those without the treatment.

“I’ve never read about or thought about ventilation using the enteral system,” says Divya Patel, a pulmonary and critical care physician at the University of Florida College of Medicine who did not participate in the work. “Mechanical ventilators are a bridge. They buy ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours