Many Bacteria and Archaea Promoters Work Forward and Backward

New analyses find that divergent transcription, in which one promoter directs the expression of two adjacent genes oriented in opposite directions, is conserved across all domains of life.

Written byJack J. Lee
| 4 min read
streaks of white bacterial colonies on a blue Petri dish

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, SCHARVIK

Contrary to what’s typically described in biology textbooks, bacteria and archaea can have transcription proceed in opposite directions on the genome. This occurs thanks to bidirectional promoters—DNA sequences where RNA polymerases can hop on and travel one way or the other to produce mRNA transcripts. Such promoters aren’t rare occurrences: 19 percent of all transcription start sites (TSSs) in Escherichia coli are associated with a bidirectional promotor, according to a study published May 6 in Nature Microbiology.

“We were really surprised,” says study coauthor Emily Warman, a molecular microbiology postdoc at the University of Birmingham in the UK. While previous research had described bidirectional promoters in eukaryotes, as well as in a few bacteria and archaea species, the new study establishes divergent transcription—the reading of genes in both directions—as a widespread feature conserved across all three domains of life.

In eukaryotic cells, DNA winds around histone ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of jack j. lee in black and white

    Jack is a science writer based in the San Francisco Bay Area. He has a bachelor’s degree in biology from Caltech and a PhD in molecular biology from Princeton University. He also completed a master’s in science communication at the University of California, Santa Cruz. In July 2021, he began a communications fellowship at the National Cancer Institute’s Division of Cancer Prevention. You can find more of his work at www.jackjleescience.com.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo