Maternal Response to Zika Damages Mouse Fetuses

Signaling pathways triggered by the mother’s immune system may cause complications during fetal development.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Mouse fetuses developing in Zika-infected mothers with normal immune signaling showed stunted growth and other abnormalities (right). By contrast, fetuses lacking key immune signaling proteins showed more normal development (left). SCI. IMMUNOL. 3, EAAO1680, 2018Some of the developmental damage observed in Zika-infected fetuses may be caused by the maternal immune system, according to a study published today (January 5) in Science Immunology. Researchers at Yale University found that mouse fetuses deprived of immune proteins known as interferon alpha/beta receptors (IFNARs) racked up fewer complications when their mothers were infected with the Zika virus than those with normally functioning proteins.

“We thought the fetuses missing this interferon receptor would be more susceptible to death from Zika infection,” study coauthor Akiko Iwasaki, a Yale immunologist, tells reporters, according to HealthDay News. “What we found was quite the opposite. . . . The fetuses unable to respond to interferon survived infection, and those that had the receptor, either they all died or were very small.”

IFNARs are activated by type I interferons (IFNs), antiviral proteins released by the mother’s immune system upon viral infection. Previous research in humans has suggested that the loss of IFNARs, and the subsequent pathway trigged by IFN signaling, is associated with greater susceptibility to Zika infection—indeed, the IFNAR-deficient fetuses in this study showed higher viral loads.

But the Yale team found that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery