Mini-Metagenomics Leads to Microbial Discovery

Researchers develop a method that combines the strengths of shotgun metagenomics and single-cell genome sequencing in a microfluidics-based platform.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Bijah Spring, Yellowstone National ParkFLICKR, NPS / JACOB W. FRANKScientists searching for undiscovered microbial species have historically had a choice of two DNA-based techniques. The first is shotgun metagenomics, where researchers extract and sequence the DNA from an environmental sample that contains many community members. This technique can yield information about the species present in a community and their relative abundance, but works best for samples without too much diversity and doesn’t always reveal rare microbes.

The second option is single-cell sequencing, which has the advantage of providing full microbial genomes, but it can be labor-intensive and expensive.

Now, researchers have combined aspects of both strategies to develop a microfluidics-based mini-metagenomic method, which allows single-cell sequencing of many small groups of cells at once. The scientists described their work last week (July 7) in eLife.

The project arose from the desire to do large-scale, single-cell genome experiments, says Stephen Quake, a bioengineer at Stanford University. The resulting microfluidics-based method “brings the best of both worlds from what have been the two predominant techniques and allows us to explore complex ecosystems with a precision that’s never before been possible,” he adds.

Quake, postdoctoral fellow Brian Yu, and colleagues first added a mixture ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH