Mouse Model Shows How Parkinson’s Disease Begins in the Gut

Johns Hopkins’s Ted Dawson discusses his lab’s demonstration that misfolded α-synuclein can move from the stomach to the brain and cause physical and cognitive symptoms.

Written byEmma Yasinski
| 3 min read
ted dawson alpha-synuclein parkinson's disease model gut vagus nerve dopamine johns hopkins school of medicine

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Scans of the brains of mice show a reduction in dopamine (colored areas) in the striatum of the Parkinson’s disease model that was injected with pathogenic α-synuclein (right; control mouse on left).
TED DAWSON ET AL. / NEURON, 2019

In 2003, Heiko Braak, then a neuroanatomist at the University of Frankfurt, suggested that Parkinson’s disease pathology may start in the gut and travel from there to the brain long before a patient shows symptoms. The idea, based on postmortem analyses of samples from parkinson’s patients, has been hotly debated ever since.

In a study published today (June 26) in Neuron, Ted Dawson, a neurologist at Johns Hopkins School of Medicine, and his team created an animal model of the disease by injecting particular proteins into the stomachs of mice. About a month later, the animals showed symptoms of Parkinson’s disease. The model not only demonstrates how the disease protein can ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH