Mouse Moms’ Behavior Affects Pups’ Genome Structures

Mice who get less attention from their mothers have more copies of a common retrotransposon in the genomes of their hippocampal neurons.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A hippocampal cell expresses a mobilized, GFP-tagged LINE-1 element (green). All nuclei are in blue.SALK INSTITUTESome mouse mothers groom, lick, and nurse their babies more than others. In a study published in Science today (March 23), researchers demonstrate that this natural variation in maternal behavior is linked to the structure of pups’ genomes, specifically, the activation of one of the most common jumping genes in the genome, LINE-1.

“What’s fascinating about the paper is the connection between experience, epigenetics, and restructuring of the genome,” says Moshe Szyf, a geneticist at McGill University in Montreal who did not participate in the work. “We usually think about epigenetics changes that don’t change the sequence, but here there was a connection of the maternal care, the change in methylation . . . and then restructuring.”

Coauthor Tracy Bedrosian, who did the work as a postdoc at the Salk Institute and is now a scientist at Ohio-based Neurotechnology Innovations Translator, and her colleagues did not set out to study maternal behavior. Instead, they wanted to explore the effects of maternal stress and environmental enrichment on the retrotransposon LINE-1 (L1), which can copy and paste itself into new ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo