Neural Cell Types Tied to Autism Identified in Single-Cell Study

An RNA analysis of human brain cells reveals gene expression changes in cortical neurons and microglia linked to autism spectrum disorder (ASD).

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: ISTOCK, JOLYGON

Sequencing the nuclear RNA of more than 100,000 individual postmortem brain cells from people with and without autism spectrum disorder indicates the types of genes dysregulated in the condition and the types of cells in which such dysregulation occurs. The results, reported in Science today (May 16), help narrow the focus of future ASD studies to the most likely molecular and cellular anomalies, say researchers.

“It’s using the latest technology, it’s looking at the single cell level, and it validates and extends previous observations,” says autism researcher Daniel Geschwind of the University of California, Los Angeles, who was not involved in the research. “It takes the previous work and brings it to a level of resolution that we didn’t have before.”

“This was an experiment that needed to be done,” adds geneticist Stephan Sanders of the University of California, San Francisco, writing in an email to The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery