New Resource Ranks Chemical Probes for Human Proteins

With many probes being seriously flawed, Probe Miner helps researchers find those that are most specific and effective for manipulating their chosen proteins.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ISTOCK, SHUNYUFANChemical probes—small molecules used to manipulate protein function—are often not as selective or effective as the researchers using them might hope. Now, a resource called Probe Miner aims to give scientists a heads up if their choice is no good, and offer better options. In a study published today (December 14) in Cell Chemical Biology, researchers from the Institute of Cancer Research (ICR) in London describe the tool, which evaluates millions of chemical probes based on publicly available data and returns a list ranking the probes in order of effectiveness against a target.

“Getting all the data together is a monumental task, but now it’s in very simple visual form,” says Michael Walters, a medicinal chemist at the University of Minnesota who was not involved in the study. “This portal should allow people to be more efficient and effective in their research because it really points you to the best probes and gives you all of the necessary details on them.”

Poor reagents are a major contributor to the estimated $28 billion spent each year in the U.S. on research that can’t be replicated. “There is widespread misuse of chemical tools,” says coauthor Paul Workman, who works in drug discovery at the ICR. Biologists often use poor quality compounds or select a chemical probe that interacts with many ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo