New Study Fuels Debate About Source of Birds’ Magnetic Sense

A detailed analysis of cryptochrome 4 shows that the protein is highly sensitive to magnetic fields in vitro, but some researchers dispute the authors’ assertion that the findings could help explain avian magnetoreception.

| 7 min read
A European robin on a tree branch

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: © ISTOCK.COM, ANDREW_HOWE

A protein found in robins’ eyes has all the hallmarks of a magnetoreceptor and could help birds navigate using the Earth’s magnetic fields, according to a study published today (June 23) in Nature. The research, an intensive in vitro analysis of robin cryptochrome 4 (Cry4), revealed that the protein is magnetically sensitive and fulfills several predictions of one of the leading quantum-based theories for how avian magnetoreception might work.

The authors of the study argue that their findings support Cry4 as the likely receptor for birds’ still largely mysterious magnetic sense. But some other researchers who spoke to The Scientist say that while the results are extremely useful for understanding cryptochromes, a family of proteins often studied in circadian rhythms, the paper omits some scientific context for its findings and doesn’t necessarily support Cry4 as the elusive magnetoreceptor.

“It’s a very important step to show that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis