New Study Fuels Debate About Source of Birds’ Magnetic Sense

A detailed analysis of cryptochrome 4 shows that the protein is highly sensitive to magnetic fields in vitro, but some researchers dispute the authors’ assertion that the findings could help explain avian magnetoreception.

Written byCatherine Offord
| 7 min read
A European robin on a tree branch

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: © ISTOCK.COM, ANDREW_HOWE

A protein found in robins’ eyes has all the hallmarks of a magnetoreceptor and could help birds navigate using the Earth’s magnetic fields, according to a study published today (June 23) in Nature. The research, an intensive in vitro analysis of robin cryptochrome 4 (Cry4), revealed that the protein is magnetically sensitive and fulfills several predictions of one of the leading quantum-based theories for how avian magnetoreception might work.

The authors of the study argue that their findings support Cry4 as the likely receptor for birds’ still largely mysterious magnetic sense. But some other researchers who spoke to The Scientist say that while the results are extremely useful for understanding cryptochromes, a family of proteins often studied in circadian rhythms, the paper omits some scientific context for its findings and doesn’t necessarily support Cry4 as the elusive magnetoreceptor.

“It’s a very important step to show that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo